Computational Studies of Snake Venom Toxins
نویسندگان
چکیده
Most snake venom toxins are proteins, and participate to envenomation through a diverse array of bioactivities, such as bleeding, inflammation, and pain, cytotoxic, cardiotoxic or neurotoxic effects. The venom of a single snake species contains hundreds of toxins, and the venoms of the 725 species of venomous snakes represent a large pool of potentially bioactive proteins. Despite considerable discovery efforts, most of the snake venom toxins are still uncharacterized. Modern bioinformatics tools have been recently developed to mine snake venoms, helping focus experimental research on the most potentially interesting toxins. Some computational techniques predict toxin molecular targets, and the binding mode to these targets. This review gives an overview of current knowledge on the ~2200 sequences, and more than 400 three-dimensional structures of snake toxins deposited in public repositories, as well as of molecular modeling studies of the interaction between these toxins and their molecular targets. We also describe how modern bioinformatics have been used to study the snake venom protein phospholipase A2, the small basic myotoxin Crotamine, and the three-finger peptide Mambalgin.
منابع مشابه
Pharmacokinetics of Snake Venom
Understanding snake venom pharmacokinetics is essential for developing risk assessment strategies and determining the optimal dose and timing of antivenom required to bind all venom in snakebite patients. This review aims to explore the current knowledge of snake venom pharmacokinetics in animals and humans. Literature searches were conducted using EMBASE (1974-present) and Medline (1946-presen...
متن کاملSnake Venom Cytotoxins, Phospholipase A2s, and Zn2+-dependent Metalloproteinases: Mechanisms of Action and Pharmacological Relevance
Snake venom toxins are responsible for causing severe pathology and toxicity following envenomation including necrosis, apoptosis, neurotoxicity, myotoxicity, cardiotoxicity, profuse hemorrhage, and disruption of blood homeostasis. Clinically, snake venom toxins therefore represent a significant hazard to snakebite victims which underscores the need to produce more efficient anti-venom. Some sn...
متن کاملThe Effect of Snake Venom (Naja naja oxiana) on Proliferation Rate of cancer Cells
Aims Because cancer is the leading cause of death worldwide, finding a better way to treat it seems essential. Doxorubicin is one of the most common drugs in the treatment of cancer, which has many negative and toxic effects. Therefore, efforts to produce effective anticancer drugs through screening natural compounds, such as animal toxins continue. This study aimed to evaluate the effect of Na...
متن کاملInhibition of Hemorragic Snake Venom Components: Old and New Approaches
Snake venoms are complex toxin mixtures. Viperidae and Crotalidae venoms, which are hemotoxic, are responsible for most of the envenomations around the world. Administration of antivenins aimed at the neutralization of toxins in humans is prone to potential risks. Neutralization of snake venom toxins has been achieved through different approaches: plant extracts have been utilized in etnomedici...
متن کاملIdentification and isolation of immunodominant proteins of Naja naja (Oxiana) snake venom
Snake venom is a complex mixture of proteins, peptides, enzymes, carbohydrates, and minerals. They contain a variety of chemicals with pharmacological and toxicological properties. The innate immune system is the first line of defense against toxins and microbes. Antibacterial and anticancer proteins produced by snake venom have recently attracted significant attention due to their relevance to...
متن کامل